Pulmonary and systemic nitric oxide metabolites in a baboon model of neonatal chronic lung disease.

نویسندگان

  • David A Munson
  • Peter H Grubb
  • Jay D Kerecman
  • Donald C McCurnin
  • Bradley A Yoder
  • Stanley L Hazen
  • Philip W Shaul
  • Harry Ischiropoulos
چکیده

We report on developmental changes of pulmonary and systemic nitric oxide (NO) metabolites in a baboon model of chronic lung disease with or without exposure to inhaled NO. The plasma levels of nitrite and nitrate, staining for S-nitrosothiols and 3-nitrotyrosine in the large airways, increased between 125 d and 140 d of gestation (term 185 d) in animals developing in utero. The developmental increase in NO-mediated protein modifications was not interrupted by delivery at 125 d of gestation and mechanical ventilation for 14 d, whereas plasma nitrite and nitrate levels increased in this model. Exposure to inhaled NO resulted in a further increase in plasma nitrite and nitrate and an increase in plasma S-nitrosothiol without altering lung NO synthase expression. These data demonstrate a developmental progression in levels of pulmonary NO metabolites that parallel known maturational increases in total NO synthase activity in the lung. Despite known suppression of total pulmonary NO synthase activity in the chronic lung disease model, pulmonary and systemic NO metabolite levels are higher than in the developmental control animals. Thus, a deficiency in NO production and biological function in the premature baboon was not apparent by the detection and quantification of these surrogate markers of NO production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhaled NO improves early pulmonary function and modifies lung growth and elastin deposition in a baboon model of neonatal chronic lung disease.

Nitric oxide (NO) serves multiple functions in the developing lung, and pulmonary NO production is decreased in a baboon model of chronic lung disease (CLD) after premature birth at 125 days (d) gestation (term = 185d). To determine whether postnatal NO administration alters the genesis of CLD, the effects of inhaled NO (iNO, 5 ppm) were assessed in the baboon model over 14d. iNO caused a decre...

متن کامل

PULMONARY VASCULAR MUSCLE PROLIFERATION AS A RESULT OF PROTEIN AND mRNA-eNOS ALTERATIONS IN A RAT MODEL OF CHF

Endothelial Nitric Oxide Synthase (eNOS) produces nitric oxide (NO) from L-arginine and is important for the maintenance of cardiovascular homeostasis. Congestive heart failure (CHF) generally results in increased pulmonary blood flow and if untreated leads to pulmonary hypertension and end stage heart failure. We therefore hypothesized that increased pulmonary flow without changes in pres...

متن کامل

Phenotypic assessment of pulmonary hypertension using high-resolution echocardiography is feasible in neonatal mice with experimental bronchopulmonary dysplasia and pulmonary hypertension: a step toward preventing chronic obstructive pulmonary disease

Bronchopulmonary dysplasia (BPD) and chronic obstructive pulmonary disease (COPD) are chronic lung diseases of human infants and adults, respectively, that are characterized by alveolar simplification. One-third of the infants with severe BPD develop pulmonary hypertension (PH). More importantly, PH increases morbidity and mortality in BPD patients. Additionally, COPD is a common respiratory mo...

متن کامل

Pulmonary NO synthase expression is attenuated in a fetal baboon model of chronic lung disease.

Nitric oxide (NO), produced by NO synthase (NOS), serves multiple functions in the perinatal lung. In fetal baboons, neuronal (nNOS), endothelial (eNOS), and inducible NOS (iNOS) are all primarily expressed in proximal respiratory epithelium. In the present study, NOS expression and activity in proximal lung and minute ventilation of NO standard temperature and pressure (VeNO(STP)) were evaluat...

متن کامل

Developmental differences in pulmonary eNOS expression in response to chronic hypoxia in the rat.

Chronic hypoxia (CH) increases pulmonary endothelial nitric oxide synthase (eNOS) protein levels in adult rats but decreases eNOS protein levels in neonatal pigs. We hypothesized that this differing response to CH is due to developmental rather than species differences. Adult and neonatal rats were placed in either hypobaric hypoxia or normoxia for 2 wk. At that time, body weight, hematocrit, p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of respiratory cell and molecular biology

دوره 33 6  شماره 

صفحات  -

تاریخ انتشار 2005